Insulin resistance is a cellular antioxidant defense mechanism
نویسندگان
چکیده
منابع مشابه
Insulin resistance is a cellular antioxidant defense mechanism.
We know a great deal about the cellular response to starvation via AMPK, but less is known about the reaction to nutrient excess. Insulin resistance may be an appropriate response to nutrient excess, but the cellular sensors that link these parameters remain poorly defined. In the present study we provide evidence that mitochondrial superoxide production is a common feature of many different mo...
متن کاملCellular mechanism of insulin resistance in nonalcoholic fatty liver disease.
Insulin resistance is associated with nonalcoholic fatty liver disease (NAFLD) and is a major factor in the pathogenesis of type 2 diabetes. The development of hepatic insulin resistance has been ascribed to multiple causes, including inflammation, endoplasmic reticulum (ER) stress, and accumulation of hepatocellular lipids in animal models of NAFLD. However, it is unknown whether these same ce...
متن کاملResistance to paclitaxel is proportional to cellular total antioxidant capacity.
Paclitaxel, one of the most commonly prescribed chemotherapeutic agents, is active against a wide spectrum of human cancer. The mechanism of its cytotoxicity, however, remains controversial. Our results indicate that paclitaxel treatment increases levels of superoxide, hydrogen peroxide, nitric oxide (NO), oxidative DNA adducts, G2-M arrest, and cells with fragmented nuclei. Antioxidants pyruva...
متن کاملInsulin Resistance: Molecular Mechanism
Insulin resistance in skeletal muscle is present in humans with type 2 diabetes (non-insulin dependent diabetes mellitus) and obesity and in rodents with these disorders. Malonyl CoA is a regulator of carnitine palmitoyl transferase l (CAP I), the enzyme that controls the transfer of long chain fatty acyl CoA into mitochondria, where it is oxidized. In rat skeletal muscle, the formation of malo...
متن کاملCisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes.
Cisplatin is one of the most effective broad-spectrum anticancer drugs. Its effectiveness seems to be due to the unique properties of cisplatin, which enters cells via multiple pathways and forms multiple different DNA-platinum adducts while initiating a cellular self-defense system by activating or silencing a variety of different genes, resulting in dramatic epigenetic and/or genetic alternat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2009
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.0902380106